Multimode interference devices for focusing in microfluidic channels.

نویسندگان

  • Hamish C Hunt
  • James S Wilkinson
چکیده

Low-cost, compact, automated optical microsystems for chemical analysis, such as microflow cytometers for identification of individual biological cells, require monolithically integrated microlenses for focusing in microfluidic channels, to enable high-resolution scattering and fluorescence measurements. The multimode interference device (MMI), which makes use of self-imaging in multimode waveguides, is shown to be a simple and effective alternative to the microlens for microflow cytometry. The MMIs have been designed, realized, and integrated with microfluidic channels in a silica-based glass waveguide material system. Focal spot sizes of 2.4 μm for MMIs have been measured at foci as far as 43.7 μm into the microfluidic channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this work, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing sev...

متن کامل

Universally applicable three-dimensional hydrodynamic microfluidic flow focusing.

We have demonstrated a microfluidic device that can not only achieve three-dimensional flow focusing but also confine particles to the center stream along the channel. The device has a sample channel of smaller height and two sheath flow channels of greater height, merged into the downstream main channel where 3D focusing effects occur. We have demonstrated that both beads and cells in our devi...

متن کامل

Noncooperative Multimode Precoding with Limited Feedback in MIMO Interference Channels

In a K-user N×N MIMO interference channel, each user achieves N/2 degrees of freedom through the concept of interference alignment [1], which utilizes the reciprocity of wireless channels. In nonreciprocal MIMO interference channels, [1] needs huge feedback overhead since each receiver should inform each transmitter how much interference it induces. When the bandwidth of the feedback channel is...

متن کامل

Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.

Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. How...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 36 16  شماره 

صفحات  -

تاریخ انتشار 2011